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Abstract. The Pure Adaptive Search (PAS) algorithm for global optimization yields a sequence of
points, each of which is uniformly distributed in the level set corresponding to its predecessor. This
algorithm has the highly desirable property of solving a large class of global optimization problems
using a number of iterations that increases at most linearly in the dimension of the problem. Unfor-
tunately, PAS has remained of mostly theoretical interest due to the difficulty of generating, in each
iteration, a point uniformly distributed in the improving feasible region. In this article, we derive a
coupling equivalence between generating an approximately uniformly distributed point using Markov
chain sampling, and generating an exactly uniformly distributed point with a certain probability. This
result is used to characterize the complexity of a PAS-implementation as a function of (a) the number
of iterations required by PAS to achieve a certain solution quality guarantee, and (b) the complexity
of the sampling algorithm used. As an application, we use this equivalence to show that PAS, using
the so-called Random ball walk Markov chain sampling method for generating nearly uniform points
in a convex region, can be used to solve most convex programming problems in polynomial time.
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1. Introduction

Consider global optimization problems of the following form:
min f (x) (P)
xeS
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where the objective function f is continuous over the feasible region S c R¢,
which is a compact, convex body, i.e., S is compact, convex, and its interior is
nonempty.

The Pure Adaptive Search (PAS) algorithm was first developed by Patel, Smith
and Zabinsky [14] for convex programming problems, and later extended to a large
class of global optimization algorithms by Zabinsky and Smith [16]. It proceeds
by generating a sequence of points in the feasible region S, with the property that
each point is uniformly distributed in the level set corresponding to its predecessor.
Under mild conditions, it was shown that the expected number of iterations re-
quired to obtain a solution with a given error increases at most linearly in the
dimension of the problem. Bulger and Wood [3] extended this result under even
milder conditions as a byproduct of studying a class of algorithms called Hesitant
Adaptive Search.

What has prevented the practical use of PAS is that the problem of generating a
uniformly distributed point in an arbitrary, or even convex, set is an extremely dif-
ficult one. However, progress has been made during the last decade using Markov
chain sampling techniques. In particular, it is now possible to generate, in poly-
nomial time, a point in a convex set that is approximately uniformly distributed.
The first link between these methods and PAS has been made by Gademann [5],
who developed a polynomial time implementation of PAS for linear programming
problems.

In this paper we first derive a coupling equivalence between generating an ap-
proximately uniformly distributed point with certainty, and an exactly uniformly
distributed point with a certain probability. Next we show that, using PAS, we
can find a point that is approximately optimal with given probability in a linear
number of iterations. These two results are then used to prove the main result of
this paper: the computational complexity of finding a solution to (P) with prespe-
cified probability and error is equal to the number of iterations required by PAS to
achieve a certain solution quality guarantee (which, for certain global optimization
problems, can be shown to be of the order of the dimension d of the problem) times
the computational complexity of generating a uniformly distributed point in a full-
dimensional compact set of dimension d with prespecified probability and error
using a Markov chain sampling technique. This result implies that the question of
finding the complexity of (approximately) solving an optimization problem reduces
to the question of finding the complexity of (approximate) random sampling in
certain classes of regions. As an application, we use the result to show that there
exists a polynomial time implementation of the Pure Adaptive Search algorithm
for most convex programming problems.

2. Approximate and Exact Sampling

LetX = (X,; n=0,1,2,...)beaMarkov chain defined on the measurable space
(S, B), where B is the restriction of the Borel o-field on R? to S. If the Markov
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chain has a limiting distribution s, then we can use this Markov chain to sample
approximately from the distribution 7 : starting from some arbitrary point xo € S,
we simulate the Markov chain for a large number of iterations. The last point thus
generated is approximately distributed according to sz. Our goal in this section is
to convert this result into one regarding the generation of points distributed exactly
according to the limiting distribution 7= of the Markov chain.

This goal can be achieved, if we, instead of considering deterministic stopping
times, consider random stopping times. The following example illustrates our mo-
tivation. Suppose we start with a point Xo = xq in an d-dimensional hypercube
C and randomly select, with equal probability, one of the coordinate directions e;
(i=1,...,d). Wethen generate X, uniformly over the line segment in C passing
through xq and parallel to ¢;. Repeating this process, we obtain a Markov chain
X over C with uniform limiting distribution (see Berbee et al. [2] and Bélisle,
Romeijn and Smith [1]). For any finite deterministic n, X, cannot be uniformly
distributed over C since there is a positive probability of choosing the same co-
ordinate direction in the first n iterations. On the other hand, if we have selected
all d coordinate directions by the T-th iteration, then X7 is exactly uniformly
distributed over C. Note that we do not have a contradiction since T is a random
time, not a deterministic one.

To study such random times at which a Markov chain attains exactly a particular
distribution, we turn to results from coupling theory. A coupling of two Markov
chains X and X’ is a random vector (5(\, )?’) such that the distributions of X and
X' are the marginal distributions of X, X). A coupling time T corresponding to a
coupling (X, X' of two Markov chains X and X’ is a random variable T such that
X, = X/ forall n > T (see Lindvall [9]).

Now let us assume that the Markov chain is Harris recurrent with respect to
7 (or w-recurrent), which means that, for all sets B € 8B with positive measure
7(B) > 0,

Pr(X, e Bforsomen > 1 Xo=x)=1 forallxe S

and aperiodic, i.e., there exists no k-tuple (A4, ... , Ay) of k > 1 disjoint sets in B
such that (for all )

Pr(Xn+1eAj+1|X,,:x):1 XGAj,j:].,...,k—l
Pr(Xn+1 e AlX,=x)=1 x e A

(see Orey [13]). It will be convenient to denote the shifted sequence {X,}z2, formed
by discarding the first n iterates of X by 6, X.

A generalization of Goldstein’s theorem (see Lindvall [9]) relates coupling times
to the total variation distance between the distribution of the iterates of a Markov
chain and the limiting distribution of the chain.
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DEFINITION 2.1. If 7, and 7, are probability measures over a measurable space
(E, F), then the total variation distance between r; and =, isequal to

w1 — 2|l = 2 sup (w1 (F) — m2(F)).
Fe¥

THEOREM 2.2. For Markov chains X = {X,}%°, and X' = {X}>°,, the follow-
ing are equivalent:
(i) Thereexistsa coupling of X and X’ with coupling time 7' such that

IPr6,X € ) —Pr(6,X € )| =2 Pr(T > n)
and

lim Pr(T > n) =0.

n—0oo

(i) The total variation distance between the distributions of 6,X and 6,X’
converges to zero asn — 00.

Proof.
(i) = (ii):
This is immediate by Definition 2.1.
(i) = ():
Goldstein’s theorem and Lindvall [9] (sections 111.14 and 111.15) state that (ii) im-
plies the existence of a coupling and corresponding coupling time with the property
that

|Pr6,X € ) —Pr0,X € )| <2Pr(T >n)
and

lim Pr(T > n) =0.

n—o00

Lindvall [9] then strengthens this result to the existence of another coupling with
the property

| Pr@,X € ) —Pr(6,X € )| =2 Pr(T > n)

and
lim Pr(T >n)=0
which proves the desired result. a

To be able to apply Theorem 2.2, we convert total variation distances between
the distributions of iterates of Markov chains to total variation distances between
the distributions of the shifted chains with the following result.
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THEOREM 2.3. Let X and X’ be two Markov chains over a measurable space
(S, B) having the same transition kernel, but possibly differing in their initial
distribution. Fix § > 0 and suppose that the total variation distance between the
distributions of the random variables X,, and X/, is bounded from above by §, for
some n > 0. Then the total variation distance between the distributions of the
stochastic processes 6, X and 6, X’ is bounded from above by 23.

Proof. Consider any set B € B>. Let w and A denote the distributions of X,
and X, respectively. Let B denote the projection of B onto S equal to the set of
n-th elements of each sequence in B.

Pr(0,X € B) —Pr(9,X' € B)

= f Pr(6,X € BIX, =x)dun — / Pr(6,X' € B|X, = x)dA
s s

= /;Pr(@nX e B|X,=x)dn — /;Pr(@,,X’ € B|X, = x)dA
B B

= /;Pr(@nX e B|X,=x)dn — /;Pr(@,,X € B|X, =x)dx
B B

where the last equality is due to the chains sharing the same Markov kernel. Now
denote the signed measure 1« — 4 by v. By the Hahn decomposition Theorem (see
Halmos [7]), there exists a partition of B into sets B; and B, which are positive
and negative with respect to v. In other words, v is a non-negative measure on B;
while —v is a non-negative measure on B,. Hence, we have that

Pr(6,X € B) — Pr(6,X’ € B)
= /;Pr(enX € B|X, = x)dv
B

= /A Pr6,X € B|X, = x)dv +/ Pr6,X € B|X, = x)dv

By §2

=fA Pr(6,X € B|X, = x)dv —/ Pr6.X € B|X, = x)d(-v)

By B,

Thus,
|Pr(6,X € B) — Pr(6,X’' € B)|

/A Pr(6,X € B|X, =x)dv —/A Pr(6,X € B|X, = x)d(—v)

By By

< fA Pr#,X € B|X, = x)dv +/A Pr#,X € B|X, = x)d(—v)
By By

= v(B1) + (—v)(B)

= 1(By) — M(By) + AM(By) — u(By).
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But then, since
IPr(X, € ) —=Pr(X, e ) <4
we have from the definition of total variation distance that
ju(B1) — A(By) < 38
and
3(By) — 11(By) < 38.
Hence
|Pr(6,X € B) — Pr(6,X' € B)| <
and thus, again by definition of total variation distance, we have that

| Pr(6,X € ) —Pr(6,X" € || < 26. O

The following theorem is an application of Theorem 2.2:

THEOREM 2.4. Consider an aperiodic Markov chain X that is Harris recurrent
with respect to its stationary distribution . In addition, let X’ be a Markov chain
having the same transition kernel, but with a possibly different initial distribution.
Then there exists a coupling of X and X’ with coupling time T' such that, for all
n=0,12,...,

| Pr0,X € ) —Pr(6,X € )| =2 Pr(T > n).

Proof. Since X and X’ are aperiodic and Harris recurrent, the total variation
distance between the distributions of X, and X/ converges to zero (as n — oo;
see Orey [13]). Theorem 2.3 then tells us that the total variation distance between
6,X and 6, X’ converges to zero as well (as n — o0). Theorem 2.2 now yields the
desired result. 0

We may now present the main results from this section. Theorem 2.5 shows that
a point generated from a distribution that is within § of some distribution = is stat-
istically indistinguishable from a point that is, with probability at least 1—3§, exactly
generated from the distribution . Corollary 2.6 then uses this fact to conclude that,
as soon as a Markov chain has been run long enough to generate iteration points
having distribution close to its limiting distribution 7 in total variation, these points
are essentially indistinguishable from points generated exactly from the distribution
.

THEOREM 2.5. Suppose a Harris chain X over a measurable space (S, 8B) is
such that its first element, Xy, has distribution within § in total variation dis
tance from its limiting distribution . Then, with probability at least 1 — §, X
is distributed exactly according to .
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Proof. Let X’ be a Harris chain having the same transition kernel as X but whose
initial distribution is its limiting distribution. By hypothesis, the total variation dis-
tance between the distribution of X, and the limiting distribution for X is less than
5. Now let T be a random variable such that X7 is the first iterate of X distributed
exactly according to . Applying Theorem 2.3 to X, the total variation distance
between the distributions of 6X = X and 6, X’ = X’ is at most 25. Since X is
a Harris chain, we may apply Theorem 2.4 to X and X’. There therefore exists a
coupling of X and X’ such that the first coupling time T satisfies

Pr(T =0) = 1—Pr(T > 0)
= 1—3||Pr(9oX € -) —Pr(6oX’ € )|
1
>1-5-28
=1-4
But by definition of a first coupling time, X7 is the first iterate of X distributed

exactly according to the distribution of the corresponding iterate of X’. Since X’
had initial limiting distribution, this completes the proof. O

COROLLARY 2.6. Suppose aMarkov chain X over ameasurable space (S, 8B) is
such that its n-th element, X,,, has distribution within § in total variation distance
from its limiting distribution 7z. Then, with probability of at least 1 — §, X,, is
distributed exactly according to .

3. PureAdaptive Search
We now return to the global optimization problem

min f (x). (P)
Applied to (P), the PAS algorithm proceeds as follows:

Pure Adaptive Search (PAS)

Step 0. Setk = 0and yp = oo.

Step 1. Generate a point x;, 1 uniformly distributed in {x € S : f(x) < y}.
Step 2. Set yi 1 = f(xk41), increment k and return to step 1.

Without loss of generality, we can assume that the range of f on S is equal
to [0, 1], so that the optimal value of (P) is equal to 0. Moreover, we can define
the error of a feasible solution x to (P) to be f(x). Now define the number of
iterations required for the convergence of PAS to a solution having an error of ¢
with probability 1 — « as

Kye =minfk :Pr(¥; <e¢) > 1— o}
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and let the random variable N, denote the number of iterations needed by PAS to
obtain a solution to (P) with error at most ¢.

Clearly, the problem instance (P) is characterized by the pair (S, f). A class »
of global optimization problems is then a set & of pairs (S, f), each corresponding
to a particular instance of (P). In the remainder, let € denote the class of convex
programming problems, i.e., problems where S and f are both convex. Moreover,
let @* denote the class of convex programming problems having a unique optimum.
For this latter class, Patel, Smith, and Zabinsky [14] derived an upper bound on
the number of iterations required for the convergence of PAS to a solution having
at most a given error. Their bound was improved by Schmeiser and Wang [15],
yielding the following result.

THEOREM 3.1. Consider a convex programming problem from the class G*.
Then

Kue <K€ =(d+1)-In <i> :
’ (022
Zabinsky and Smith [16] derived a similar result, which was improved upon by
Bulger and Wood [3], for the class g, of global optimization problems, where the
objective function f is Lipschitz continuous.

THEOREM 3.2. Consider a global optimization problem from the class 4, . Let
the diameter of the feasible region S be A, and the Lipschitz constant of the object-
ive function f be k. Then

KA
E(N) <1+d-In <_)
&
where the random variable N, denotes the number of iterations needed by PASto
obtain a solution with error at most «.

Note that the first result gives a bound on the number of iterations needed to
obtain a point with at most a given error with a certain probability, while the second
result gives a bound on the expected number of iterations needed to obtain a point
with at most a given error. The following result shows a relationship between the
two.

THEOREM 3.3. Consider the problem (P). Let
Kye =minfk : Pr(Y; <e) > 1—a}. 1)

Then

&E(N,
Koo < ( S).
o
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Proof. Clearly,
Pr(Y, <e) =Pr(N, < k).
Thus,
Kye =minfk : Pr(N, < k) > 1—«}
which implies that both
PriNe < Koe) 21—«

and
Pr(Ne < Kpe —1) <1l—«
so that
Pr(Ne 2 Kye) >
But then
o
E(N,) = ) Pr(N, > k)
k=1
Ka.e
> ) Pr(N, > k)
k=1

Koo
> > PI(N, > Ko)
k=1

== Ka,s : Pr(Ns = K(x,s)

> aK,,

yielding the desired result.

For global optimization problems, this now yields

41

COROLLARY 3.4. Consider a global optimization problem from the class g, .
Let the diameter of the feasible region S be A, and the Lipschitz constant of the

objective function f be «. Then

1 A
Koo <KUD == . (1 +d-In (K—>> .
’ o &
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4. Complexity of Pure Adaptive Search for Global Optimization
4.1. ORACLES AND COMPLEXITY

An often used way of measuring the complexity of algorithms is using the concept
of oracle calls. An oracle is a ‘black box’ that performs tasks of a predefined type,
such as checking membership of a point in a set or evaluating an objective function.
This informational approach to complexity lends itself aptly to the discussion of
optimization questions since objective and constraint functions may be arbitrarily
difficult to compute.

If the maximum number of oracle calls required by an algorithm to solve a
certain class of problems is bounded by a positive constant times some function
y depending on a number of problem characteristics, then the algorithm is said
to have complexity of order O(y) with respect to the oracles employed. If y is a
polynomial function in its parameters, then the algorithm is said to be polynomial,
or the algorithm is said to enjoy polynomial complexity.

It is possible that for all but a handful of pathological problem instances an
algorithm may perform far better than the worst case complexity measure suggests.
However, since there is no way to easily identify such troublesome problems a pri-
ori, much less the distribution of the frequency of occurrence of problems of vary-
ing difficulty, we must consider the worst case scenario to fairly and theoretically
evaluate performance.

For our purposes, we consider three types of oracles. A membership oracle for
a set S takes as input a point x and returns a yes/no answer as to whether or not x is
contained in S. An evaluation oracle for a function f takes as input a point x in the
domain of f and returns the value of f(x). A separation oracle for a convex set S
returns, when given a point x, either the assertion that x € S or a hyperplane 4 such
that S is completely contained in the halfspace defined by % that does not contain
x. For more information on oracles and complexity, we recommend Grétschel,
Lovasz and Schrijver [6].

4,2. COMPLEXITY OF PAS

In section 2 we have defined the concept of a Markov chain sampling algorithm.
We can define the complexity of such a sampling algorithm, on a given measurable
space (S, 8) and for a given limiting distribution s, as the number of oracle calls
necessary to sample a point whose distribution is within some prespecified distance
to . When we consider a class of Markov chain sampling algorithms, we can
define the complexity of this class of sampling algorithms as the maximum of the
complexities over each element of the class.

Suppose that we have a class of Markov chain sampling algorithms, say M(R),
for generating uniformly distributed points in each of the sets in any class of (finite-
dimensional) sets R. Moreover, let the complexity of this class of algorithms be
given by y(d, 8, R), i.e., for each d-dimensional set in R, the number of oracle
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calls necessary to sample a point whose distribution is within § in total variation
distance of the uniform distribution on that set is at most equal to y (d, 8, R).
Now let G denote a class of global optimization problems, and let

Sg={{xeS:fx)<yl:ye 1], (S, f)e§}

i.e., 4 is the set of all sets that can occur as a level set of a problem in the class §.
The corresponding class of Markov chain sampling algorithms is then M ($4). The
following theorem contains the main result of this section.

THEOREM 4.1. Consider global optimization problems of the form (P). Then the
PAS algorithm applied to a problem from the class § provides, with probability at
least 1 — «, a solution with an error of at most ¢, using a number of oracle calls
that is bounded from above by

if
(€]
K = Ka/Z,s
and
s o
T 2K

where K ,%8 is an upperbound on K, . (as defined in equation (1)) for all global
optimization problems (P) from the class §.

Proof. First note that, by Corollary 2.6, the class of Markov chain sampling
algorithms M (44) yields points that are, with prespecified probability, exactly uni-
formly distributed. Now assume that we run the PAS algorithm using the Markov
chain sampling algorithm for K iterations. Failure of this algorithm can have two
causes. Firstly, in each of the iterations of the PAS algorithm, the Markov chain
sampler could fail to generate an exactly uniformly distributed point in the level set
under consideration. Secondly, even with exact uniform samples in each iteration,
the PAS algorithm itself may fail to deliver a solution with error at most . Now let
E denote the event that the PAS algorithm using the Markov chain sampler does
not yield a solution with error at most ¢, and let A denote the event that the Markov
chain sampler yields an exactly uniformly distributed point in each of the iterations
of PAS. Furthermore, let A¢ denote the complement of event A. Then,

P(E) = P(E|A)- P(A)+ P(E|A°) - P(A°) < P(E|A) 4+ P(AY).
The probability of error is at most « if we ensure that

P(E|A) € i« 2
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and
P(A°) < o (3)

Inequality (2) follows easily if we choose K > K,/ .. Now consider event A.
By the conditions in the theorem, and Corollary 2.6, we can sample an exactly uni-
formly distributed point in each iteration with at least some prespecified probability
1—4'. Thus,

P(A) =1 -8
>1—-K¢§

(and P(A°) < K§&'). Thus, inequality (3) follows if we choose

/2

§ < 4. O
K

For the classes of Lipschitz continuous and convex programming problems
introduced in section 3, we then obtain the following results.

COROLLARY 4.2. Consider global optimization problems of the form (P). Then
the PASalgorithm applied to a problem fromthe class 4, provides, with probability
at least 1 — «, a solution with an error of at most ¢, using a number of oracle calls
that is bounded from above by

1 KA
= (1 +d-In (—)) y(d,é, 8g,)
o )

with
5§ < ad
T Z.(14d-In(2))

COROLLARY 4.3. Consider convex optimization problems of the form (P). Then
the PASalgorithm applied to a problem fromthe class @* provides, with probability
at least 1 — «, a solution with an error of at most ¢, using a number of oracle calls
that is bounded from above by

d+1)-In <i> v, 8, 8e1)
e

with
(07
6 < .
2d+1)-In(L)

L
oe
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5. Complexity of Pure Adaptive Search for Convex Programming

In this section we will make the result in Corollary 4.3 more concrete by consider-
ing sampling methods that can be used to sample uniformly distributed points in a
large class of convex bodies.

5.1. POLYNOMIAL TIME MARKOV CHAIN SAMPLERS

Markov chain samplers have received a great deal of attention during the last dec-
ade, since it was shown that some of these enjoy polynomial time complexity,
not only for sampling approximately uniformly distributed points, but also, for
example, for estimating the volume of a convex body. We will review the literature
on this topic here, and use this to obtain a polynomial time implementation of PAS
for most convex programming problems.

5.1.1. Rounding Convex Bodies

In order to ensure that it is possible to find even a single point in the convex set
S in finite time, it is reasonable to assume that this set is well-guaranteed. This
means that we know the centers and radii of two spheres, one contained inside S
and the other containing S. Note that, without the restriction imposed by the outer
ball, S could be located anywhere in R¢, and without the existence of the inner ball,
S could be arbitrarily small. The asphericity or ‘sandwiching ratio’ of S denotes
the ratio between the inscribed and circumscribed balls guaranteeing S, and is a
measure of the ‘roundness’ of S.

As we will see below, the complexity of sampling from the convex body S de-
pends strongly on the asphericity of the set. It is therefore desirable to transform §
in such a way that the asphericity is reduced, preferably to be a polynomial function
of the dimension 4 of S. (The transformed set is then often called well-rounded.)
Hereby we restrict ourselves to affine transformations, so that an (approximately)
uniformly distributed point in the transformed set, say A(S), is (approximately)
uniformly distributed in the original set S as well. The best known general result
is that, for any convex set S, the Léwner-John ellipsoid (see Grétschel, Lovasz and
Schrijver [6]) defines an affine transformation A-’, such that B € AY(S) € d B
where B is the unit sphere centered at the origin. Unfortunately, no efficient al-
gorithm for finding the transformation A’ exists. With the ellipsoid algorithm,
however, it is possible to find an affine transformation AF such that B € AE(S) C
d~/d B using a number of oracle calls that is polynomial in the dimension d (see
Grotschel, Lovasz and Schrijver [6]).

5.1.2. Random Ball Walk

The walk is a simple Markov chain first presented by Lovasz and Simonovits [11]
and examined in greater depth in [12]. When applied to a convex body S, it has
uniform limiting distribution and proceeds as follows:
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Random ball walk
Step 0. Letrn =0and let xg € S.

Step 1. Increment » and generate a candidate point z, uniformly over B(x,, p),
the d-dimensional ball of radius p, centered at x,,.

Step 2. If x, € S, then let x, = z,,, otherwise let x,, = x,_1.
Step 3. Return to step 1.

Kannan, Lovasz and Simonovits [8] show that, with appropriate choice of p, the
Random ball walk, to generate points with distribution within & of uniform in total
variation distance in a convex body, has polynomial complexity in the dimension
d, the asphericity R, and the precision §.

THEOREM 5.1. The number of iterations ysw(d, 8, 8¢) needed by the Random
ball walk, with appropriately chosen parameter p, to generate a point with distri-
bution within § in total variation distance from the uniform distribution over a set
S € 8¢, where S isthe set of all finite-dimensional convex bodies, is polynomial
ind and $.

Proof. As noted above, an affine transformation A(S) of S having asphericity
R = d° for some constant ¢ can be found in polynomial time. By Kannan, Lovasz
and Simonovits [8], a point in A(S) with distribution within § in total variation of
the uniform distribution can then be found using a polynomial number of oracle
calls, which proves the desired result. a

5.2. COMPLEXITY OF PAS

Combining the results of the previous section with Corollary 4.3 yields the follow-
ing complexity result for PAS applied to most convex programming problems.

THEOREM 5.2. Consider convex programming problems in @*. Then the PAS
algorithm, using the Random ball walk sampler, provides, with probability at least
1 —«, asolution with an error in value of at most ¢, using a number of oracle calls
that ispolynomial ind, « and .

Proof. By Theorem 5.1, and using Corollary 2.6 a point that is, with suitably
chosen minimal probability, uniformly distributed in S can be generated using a
polynomial number of oracle calls, using the Random ball walk samping method.
Since the same result holds for subsequent iterations of PAS, an application of
Corollary 4.3 now yields that PAS requires a polynomial number of oracle calls to
solve a convex programming problem in @* with probability at least 1 — o and with
error at most ¢. O
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6. Concluding Remarks

We have shown that Pure Adaptive Search can be implemented using Markov chain
samplers for generating its iterates. Since we are assured that the number of iterates
of Pure Adaptive Search grows at most linearly in the dimension of the problem
for a large class of global optimization problems, the overall efficiency of the pro-
cedure rests on the efficiency of the Markov chain sampler used for obtaining each
iterate.

Markov chain samplers are currently an extremely active area of research which
has already achieved remarkable results (see e.g. Diaconis and Freedman [4] for an
up-to-date survey, as well as the recent paper by Lovasz [10]). Although we cur-
rently are guaranteed polynomial performance only for convex regions, the promise
of polynomial samplers for more general non-convex regions offers the potential
for polynomial procedures for truly global optimization problems.
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